page contents

Smart antimicrobial Pickering emulsion stabilized by pH-responsive cellulose-based nanoparticles

2024-08-29 11:45

International Journal of Biological Macromolecules 2023




Smart antimicrobial Pickering emulsion stabilized by pH-responsive cellulose-based nanoparticles

Qing Meng, Zhou Xue, Shunli Chen, Min Wu*, Peng Lu.

摘要:Responsive antimicrobial materials can control and slow the release of antimicrobial agents smartly by responding to the stimulation of environmental conditions. In this study, we designed the pH-responsive cellulose-based nanoparticles (TOCNC-g-PEI) with amino and carboxyl groups by grafting polyethyleneimine (PEI) to carboxylated cellulose nanocrystals. Finally, the Pickering emulsion was endowed with smart antimicrobial properties by emulsifying the oregano essential oil (OEO) with nanoparticles. The TOCNC-g-PEI25000 had uniform size, greater dispersion, and excellent antimicrobial properties. The contact angles of nanoparticles were 78.70 ± 1.13°, 55.80 ± 1.58° and 55.35 ± 1.56° at neutral conditions, pH 4.0 and 8.0, respectively. The nanoparticles were responding to pH stimulation. The developed emulsion (4:6, 1.30 wt%) had exceptionally stabilized and encapsulated 98.56 ± 1.22 % of the oil phase. The OEO released rapidly within 0–12 h and slowly at 12–36 h. The cumulative release rates quickly reached 93.60 ± 3.73 % (pH 4.0) and 83.25 ± 0.36 % (pH 8.0) and stabilized gradually. The antimicrobial rates of emulsion stimulated for 4 h reached 100 % at pH 4.0, and both of them exceeded 96.10 ± 2.49 % at pH 8.0. The response of Pickering emulsion to pH stimulating controlled release antimicrobial agents and achieved smart antimicrobial.

DOI:https://doi.org/10.1016/j.ijbiomac.2023.123516


图片13.png